

尿素(Urea)含量(酶法)检测试剂盒说明书

(货号: BP10136W 微板法 96 样 有效期: 3 个月)

一、指标简介:

尿素(Urea)又称碳酰胺,旧称尿素氮(BUN),是哺乳动物和某些鱼类体内蛋白质代谢分解的主要含氮产物,也是目前含氮量最高的氮肥。

该试剂盒利用尿素在脲酶的作用下水解产生氨离子和二氧化碳,氨离子在碱性介质中与酚显色剂生成蓝色物质,该物质的生成量与尿素含量成正比。通过于 625nm 处检测该有色物质含量进而得出尿素氮含量。

二、试剂盒组分与配制:

试剂组分	试剂规格	存放温度	注意事项
试剂—	液体 0.5mL×2 支	-20℃保存	每支: 1. 用前甩几下使试剂落入底部; 2. 用不完可-20°C分装冻存; 3. 尽量减少反复冻融; 4. 保存周期与试剂盒有效期相同。
试剂二	液体 3mL×1 瓶	4℃避光保存	
	试剂三 A 1.5mL×2 支	4℃保存	每瓶: 1. 用前甩几下使试剂落入底部;
试剂三	试剂三 B 0.2mL×1 支	4℃避光保存	2. 临用前向试剂三A中加入46 µL的试剂三 B 混匀备用; 3. 保存周期与试剂盒有效期相同。
标准管	粉体 2 支	4℃保存	每支: 1. 临用前 8000g 4℃离 2min 使试剂落入管底; 2. 临用前加 1mL 去离子水溶解,浓度为6mg/mL 的尿素标准品母液; 3. 检测前再用去离子水稀释 200 倍,20μl 母液加 3.98ml 去离子水,即成 0.03mg/mL(0.5mmol/L)的尿素; 4. 保存周期与试剂盒有效期相同。

三、实验器材:

研钵(匀浆机)、天平、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、96 孔板、离心管、酶标仪、蒸馏水(去离子水、超纯水均可)。

四、指标测定:

建议先选取 1-3 个差异大的样本(例如不同类型或分组)进行预实验,熟悉操作流程,根据预实验结果确定或调整样本浓度,以防造成样本或试剂不必要的浪费!

1、样本提取:

- ① 组织样本:取约 0.1g 组织,加入 1mL 生理盐水,进行冰浴匀浆。4℃×12000rpm 离心 10min,取上清,置冰上待测。
- 【注】: 若增加样本量,可按照组织质量(g):提取液体积(mL)为1:5~10的比例进行提取。

网址: www.bpelisa.com

- ② 液体样品:液体样品:澄清的液体可直接检测;若浑浊则离心后取上清液检测。
- ③ 细菌/细胞样本: 先收集细菌或细胞到离心管内, 离心后弃上清; 取约 500 万细菌或细胞加入 1mL 生理盐水, 超声波破碎细菌或细胞 (冰浴, 功率 200W, 超声 3s, 间隔 10s, 重复 30 次); 12000rpm 室温离心 10min, 取上清, 置冰上待测。

【注】: 若增加样本量,可按照细菌/细胞数量(104):提取液(mL)为500~1000:1的比例进行提取。

2、检测步骤:

- ① 打开酶标仪, 设置温度 37°C (若仪器无法控温, 则等待仪器过自检程序即可), 调节波长到 625nm。
- ③ 所有试剂解冻至室温,按照下表在96孔板中依次加入:

HWTEL, KWIVE OF BOTH WOMEN.						
试剂名称 (μL)	测定管	空白管	标准管			
风河石孙 (AL)		(仅做一次)	(仅做一次)			
样本	20					
去离子水		20				
标准品			20			
试剂一	10	10	10			
去离子水	130	130	130			
混匀,37℃避光反应 15min						
试剂二	20	20	20			
试剂三	20	20	20			
混匀, 37℃避光反应 20min, 于 625nm 处读取吸光值 A,						
∧ A=A 测完-A 公白						

 $\triangle A = A$ 测正-A 空日。

- 【注】:1.测定管 A 值若超过 1.5,样本可用生理盐水或去离子水进行稀释,稀释倍数 D 代入公式。
 - 2. 若△A 的差值在小于 0.01,可增加样本加样量 V1 (如增至 50μL,则水相应减少,保持总体积不变;空 白管和标准管维持不变),则改变后的 V1 需代入公式重新计算。
 - 3. 试剂二和试剂三禁止预混使用,需依次加入。

五、结果计算:

1、按样本质量计算:

尿素(μ g/g)= (C $_{\kappa$ g}×V $_{\kappa}$)×10³×△A÷(A $_{\kappa$ g-A $_{\varpi}$ h)÷(W×V1÷V)×D=30×△A÷(A $_{\kappa$ g-A $_{\varpi}$ h)÷W×D 尿素($\mu mol/g$)=($C_{\kappa a}$ × V_{κ})÷60.04× 10^3 × \triangle A÷($A_{\kappa a}$ - $A_{\varphi_{\dot{a}}}$)÷(W×V1÷V)×D=0.5× \triangle A÷($A_{\kappa a}$ - $A_{\varphi_{\dot{a}}}$)÷W×D 尿素氮($\mu mol/g$)=($C_{\kappa \sharp} \times V_{\kappa}$)÷ $60.04 \times 10^3 \times \triangle A$ ÷($A_{\kappa \sharp} - A_{\varphi_{\dot{\Xi}}}$)÷($W \times V1$ ÷V) ×2×D=1× $\triangle A$ ÷($A_{\kappa \sharp} - A_{\varphi_{\dot{\Xi}}}$)÷ $W \times D$

2、按蛋白浓度计算:

尿素(μ g/mg prot)= ($C_{\kappa k} \times V_{\kappa}$)× $10^3 \times \triangle A \div (A_{\kappa k} - A_{\varphi_{\dot{\Xi}}}) \div (Cpr \times V1 \div V) \times D = 30 \times \triangle A \div (A_{\kappa k} - A_{\varphi_{\dot{\Xi}}}) \div Cpr \times D$ 尿素(μ mol/mg prot)=($C_{\overline{k}} \times V_{\overline{k}}$)÷ $60.04 \times 10^3 \times \triangle A$ ÷($A_{\overline{k}} - A_{\underline{c}} - A_{\underline{c}}$)÷($Cpr \times V1 \div V$)×D= $0.5 \times \triangle A$ ÷($A_{\overline{k}} - A_{\underline{c}} - A_{\underline{c}}$)÷ $Cpr \times D$ 尿素氮(μ mol/mg prot)=($C_{\kappa\mu} \times V_{\kappa}$)÷60.04×10³× \triangle A÷($A_{\kappa\mu}$ -A $_{\varphi_0}$)÷($Cpr \times V1$ ÷V)×2×D=1× \triangle A÷($A_{\kappa\mu}$ -A $_{\varphi_0}$)÷ $Cpr \times D$ 3、按液体体积计算:

尿素(mg/L)=(C $_{\kappa_{\pi}}$ ×V $_{\kappa}$)×10³×△A÷(A $_{\kappa_{\pi}}$ -A $_{\varphi_{\Theta}}$)÷V1×D=30×△A÷(A $_{\kappa_{\pi}}$ -A $_{\varphi_{\Theta}}$)×D 尿素(mmol/L)=($C_{k_{\text{fight}}} \times V_{k_{\text{fight}}}$)÷ $60.04 \times 10^3 \times \triangle A$ ÷($A_{k_{\text{fight}}} - A_{c_{\text{ch}}}$)÷ $V1 \times D=0.5 \times \triangle A$ ÷($A_{k_{\text{fight}}} - A_{c_{\text{ch}}}$)×D

网址: www.bpelisa.com

尿素氮(mmol/L)=(C $_{\text{标准}} \times \text{V}_{\text{标}}$)÷60.04×10³× \triangle A÷(A $_{\text{标准}}$ -A $_{\text{空h}}$)÷V1×2×D=1× \triangle A÷(A $_{\text{标准}}$ -A $_{\text{空h}}$)×D 尿素氮(mg/dL)=(C $_{\text{标准}} \times \text{V}_{\text{ឥ}}$)÷60.04×10²× \triangle A÷(A $_{\text{标准}}$ -A $_{\text{空h}}$)÷V1×2×14×D=1.4× \triangle A÷(A $_{\text{标准}}$ -A $_{\text{空h}}$)×D 4、按细胞数量计算:

尿素(ng/10⁴ cell)= (C $_{\mbox{\tiny $\kappa\mu$}}$ ×V $_{\mbox{\tiny κ}}$)×10⁶×△A÷(A $_{\mbox{\tiny $\kappa\mu$}}$ -A $_{\mbox{\tiny $2\rm el}}$)÷(500×V1÷V)×D=60×△A÷(A $_{\mbox{\tiny $\kappa\mu$}}$ -A $_{\mbox{\tiny $2\rm el}}$)×D 尿素(nmol/10⁴ cell)=(C $_{\mbox{\tiny $\kappa\mu$}}$ ×V $_{\mbox{\tiny κ}}$)÷60.04×10⁶×△A÷(A $_{\mbox{\tiny $\kappa\mu$}}$ -A $_{\mbox{\tiny $2\rm el$}}$)÷(500×V1÷V)×D=△A÷(A $_{\mbox{\tiny $\kappa\mu$}}$ -A $_{\mbox{\tiny $2\rm el$}}$)×D 尿素氮(nmol/10⁴ cell)=(C $_{\mbox{\tiny $\kappa\mu$}}$ ×V $_{\mbox{\tiny κ}}$)÷60.04×10⁶×△A÷(A $_{\mbox{\tiny $\kappa\mu$}}$ -A $_{\mbox{\tiny $2\rm el$}}$)÷(500×V1÷V)×2×D

$$=2\times\triangle A\div(A_{\kappa\mu}-A_{\Xi h})\times D$$

 C_{ku} ---尿素标品浓度,0.03mg/mL; W---取样质量,g; V1---加入样本体积,0.02mL;

 V_{κ} ---加入标准品体积,0.02mL; V---提取液体积,1mL; 14----氮元素分子量;

2---一分子尿素含有 2 个氮元素; 60.04---尿素分子量; D---稀释倍数,未稀释即为 1;

500---细胞数量,万。

Cpr---上清液蛋白浓度,mg/mL,建议使用本公司的 BCA 蛋白含量检测试剂盒。

网址: www.bpelisa.com